Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages
نویسندگان
چکیده
The assessment of macrophage response to nanoparticles is a central component in the evaluation of new nanoparticle designs for future in vivo application. This work investigates which feature, nanoparticle size or charge, is more predictive of non-specific uptake of nanoparticles by macrophages. This was investigated by synthesizing a library of polymer-coated iron oxide micelles, spanning a range of 30-100 nm in diameter and -23 mV to +9 mV, and measuring internalization into macrophages in vitro. Nanoparticle size and charge both contributed towards non-specific uptake, but within the ranges investigated, size appears to be a more dominant predictor of uptake. Based on these results, a protease-responsive nanoparticle was synthesized, displaying a matrix metalloproteinase-9 (MMP-9)-cleavable polymeric corona. These nanoparticles are able to respond to MMP-9 activity through the shedding of 10-20 nm of hydrodynamic diameter. This MMP-9-triggered decrease in nanoparticle size also led to up to a six-fold decrease in nanoparticle internalization by macrophages and is observable by T(2)-weighted magnetic resonance imaging. These findings guide the design of imaging or therapeutic nanoparticles for in vivo targeting of macrophage activity in pathologic states.
منابع مشابه
Combined effects of PEGylation and particle size on uptake of PLGA particles by macrophage cells
Objective:At the present study, relationship between phagocytosis of PLGA particles and combined effects of particle size and surface PEGylation was investigated. Materials and Methods:Microspheres and nanospheres (3500 nm and 700 nm) were prepared from three types of PLGA polymers (non-PEGylated and PEGylation percents of 9% and 15%). These particles were prepared by solvent evaporation metho...
متن کاملFluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions.
The uptake of lipoproteins by macrophages is a critical step in the development of atherosclerotic lesions. Cultured monocyte-derived macrophages take up large amounts of native LDL by receptor-independent fluid-phase pinocytosis, either constitutively or in response to specific activating stimuli, depending on the macrophage phenotype. We therefore sought to determine whether fluid-phase pinoc...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake
Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...
متن کاملThe Cytotoxicity of Silver Nanoparticles Coated with Different Proteins on Balb/c Macrophage Cells
Background and Aims: Coated nanoparticles have different surface chemistry, aggregation, and interaction properties. The aim of this study was to investigate the cytotoxicity of silver nanoparticles AgNPs coated with different proteins on Balb/c macrophages. Materials and Methods: In this study these items were evaluated: 1) the size of aggregation, 2) the quantity and mechanisms of uptake, ...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کامل